Flexible In-Situ Analytics
Karsten Schwan, Greg Eisenhauer, Matt Wolf, and Ph.D. students
Georgia Institute of Technology, CERCS Research Center

Applications:
- GTC, GTS, Pixie3D Fusion applications
- LAMMPS materials modeling code
- S3D combustion code

Problems:
- Rapid output processing for timely science insights
- Large I/O output data volume
- Coupling to science users

Technology Basis:
- ADIOS I/O interface
- EVPath data streaming middleware as ADIOS transport
- Location options for locating analytics processing: compute nodes, staging, remote, offline
- NNTI (Sandia) efficient transport for RDMA

Challenges:
- Limited resources for I/O and analytics
- High I/O performance with additional online analytics
 - Require online data reduction
 - Require limiting use of disk subsystem
 - Require judicious data movement, analytics placement, and analytics scheduling

Pixie3D Simulation -> Pixplot Analysis -> Paraview server -> remote client

8192 procs
64 procs
16 procs
remote client

Pixie3D I/O Processing Pipeline
Flexible Placement and Execution for In-Situ Analytics

Technology Contributions

- ADIOS/EVPath I/O middleware
 - High performance data movement on IB and UGNI
 - Support diverse in situ analytics placement options
 - Higher-level API: meta-data rich, easy-to-use

- Flexible Placement
 - Metric-driven optimization, including for end-to-end performance/cost objectives

- Resource Containers:
 - Resource provisioning for analytics components

Result/Impact

- Extended ADIOS with new transport to support location-flexible in situ analytics
- Implemented in situ analytics for GTS, LAMMPS, Pixie3D, S3D
- Up to 30% end-to-end performance improvement of those applications through flexible placement
- Utilized DOE-provided NNTI RDMA transport for support of data staging

Using 0.78% additional nodes offloading Pixplot and I/O to staging area increases performance by 33% in comparison to inline placement at the scale of 8192 cores.
Managing I/O Resources with I/O Containers

Applications:
- LAMMPS materials modeling code
- DOE Sandia applications
-SmartPointer Scientific Annotation Toolkit

Problems:
- Poor staging resource allocations can cause dataflow bottleneck
- Complex computational models for analytics execution

Technology Basis:
- ADIOS I/O interface
- EVPath data streaming for monitoring and control
- Multilevel management hierarchy
- Runtime resource management for I/O pipelines
- Scalable transactions for resilience (with DOE Sandia)

Challenges:
- Limited resources for I/O and analytics
- Move offline analysis workflows online
- Must support multiple computational models
- Provide scalability for non-scalable analysis codes
- Controlled data movement
- Provide fault and performance isolation for analysis components and scientific applications
Managing I/O Resources with I/O Containers

Technology

- **I/O Containers**
 - Move offline workflows online to operate on data in-transit
 - Runtime resource management to balance resource usage amongst online analysis codes
- **Doubly Distributed Transactions**
 - Provide resilience for data movement and control operations in HPC environments

Result/Impact

- Extended ADIOS and DataTap to use I/O Containers middleware
- Increased end to end performance for online analysis pipelines
- Measured performance impact of implementing transactions in HPC environments

Improved end to end performance though I/O Containers management

Performance impact of transactions for control operations

256 simulation nodes; 13 staging nodes